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TECHNICAL NOTE 2226

THEORETICAL ANALYSIS OF OSCILLATIONS IN HOVERING
OF HELICOPTER BLADES WITH INCLINED AND OFFSET
FLAPPING AND LAGGING HINGE AXES

By M. Morduchow and F. G. Hinchey
SUMMARY

The frequency end damping characteristics of the coupled flapping
and lagging oscillations of helicopter blades in hovering are derived
for the general case in which the lagging (vertical) hinge axis is off-
set from the flapping hinge axis, while both hinge axes are inclined.
An offset of the flapping hinge axis from the rotor exis of rotation is
also considered. An inclinastion of the hinge axes causes pitch change
of a blade section due to angular displacements about these axes. It
1s found from this analysis that an inclination of the flapping hinge
axis chiefly affects the values of the natural flepping frequencies and
the deamping factors of the lagging motion of a blade. An inclinstion
of ‘the lagging hinge axis, which causes considerable flapping motion
during the lagging oscillations, mainly affects the natural frequencies
and demping factors in lagging. The analysis and the numerical examples
worked out here indicate that significant increases in the damping of
the legging motions, which ordinarily border on instability, can be
obtained by suitable inclinations of the hinge axes, especially of the
lagging axis. Offsetting the flapping and lagging hinge axes tends
especially to increase the naturel lagging frequency.

INTRODUCTION

The aim of this investigation is to determine theoretically the
characteristics of the rigld-body oscillations of helicopter rotor
' blades with inclined and offset flapping (horizontal) and lagging
(vertical) hinge axes. For this purpose & simple method which requires
the solution of a fourth~degree algebraic equation for obtaining the
natural frequencies and demping decrements of the small coupled flapping
and legging oscillations of a blade in hovering about a state of static
equilibrium is developed here._ Approximate formules for these charac-
teristics, based on the quartic equation, are, moreover, given.
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The equations of motion of a blade are derived by means of the
Lagrenge equations for a system having two degrees of freedom, -nemely,
rotation sbout en inclined lagging hinge axis and rotation about an -
inclined flapping hinge axis. The flapping axis is assumed as offset
from the rotor axis of rotation, while the lagging axis-is further
essumed as offset from the flapping axis. The aerodynamic loads in
hovering are derived here on the basis of quasi-stationary flow, with
the assumption of constant downwash throughout the rotor disk.

Basically, the effect of inclining either hinge axis is to create
a kinematic relation between flapping or lagging and change of pitch of
a blade section. This kinematic relation is of the form 6 = f(B,g),
vhere 8, B, end { are, respectively, the pitch, flapping, and lagging
angles. It may be noted that, although the effects of several kinematic
constraints have already been derived in reference 1, the condition
mentioned above has not been explicitly investigated there. Since the
aerodynamic loads in hovering are largely functions of the blade, or
pitch, angle, it follows that in the present analysis the effect of
inclination of the hinge axes appears essentially in the resulting
effect on the serodynamic loads caused by the changes in blade angle.

The aﬁalysis is divided into three sections. In the first section
the explicit equations of motion of a blade are derived. The equations,
and their solutions, determining the steady-state (static in hovering)
values of flapping, lagging, and blade .angles are included here.

In the second section the dynamic equations are solved in general
terms for the frequency end demping characteristics of the oscillations
of a blade. Coupling between flapping end lagging, which becomes espe-
cially large when the lagging hinge axis is ‘inclined, is taken into
account. In addition to the development of a straightforward exact
procedure, and explicit spproximate solutions, for the natural frequen-
cies and damping decrements of the oscillations, stability criterions
are given. For any given data, these stability criterions, as well as
the explicit equations for the details of the oscillation characteristics,
can be readily applied. General conclusions regarding the effect of incli-
nation and offset of the hinge axes are derived from the general solutions
obtained.

In the final section numericel examples are worked out to illustrate
the general conclusions reached as well as the method of application of
the general solutions developed here.

This investigation has been part of a project carried out at the
Polytechnic Institute of Brookiyn under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronautics.
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SYMBOLS
amplitude of flepping and lagging oscillations,
respectively

coefficients of quartic equation (26a), defined by
equations (26b)

profile-drag coefficient of blade section
chord length of blade section
velue of ¢ of innermost blade section

distance of flapping hinge axis from axis of rotation;
flepping hinge eccentricity (fig. 1)

distance of lagging hinge axis from flepping hinge
axis; legging hinge eccentricity (fig. 1)

section profile drag per unit length of blade

drag load components in x-, y-, and z-directions,
respectively

dimensionless, definite intégra.ls defined by equa-
tions (21b)

acceleration due to gravity

1ift loads based on quasi-stationary flow

dimensionless definite integrals defined by equa-
tions (21b)

1ift load components pe:;' unit blade length in x-, y-,
end z-directions, respectively

length of blade measured from lagging hinge axis
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mass per unit length of blade

velue of m at innermost blade section

number ;)f rotor blades

complex frequency; if p = @(-R * i) (R and o real),

then a)n/2:t is the natural frequency in cycles
per second, while 2nR/m is the logerithmic decrement

_ unit weight loads of blade in z-direction

a.erod.ynamic plus weight loads per unit blade length
acting in x-, y-, and z-directions, respectively

generalized force

generalized forces corresponding to generalized
coordinates f and {

dimensionless complex frequency .(p/)
generalized coordinate

dimensionless flapping and lagging complex frequencies,
respectively -

dimensionless uncoupled flapping and lagging complex
frequencies, respectively

first approximation to dimensionless coupled flapping
and lagging complex frequencies, respectively
(equa'bions (28) and (30)) .

tip radius of blade

distance of any point on blade from axis 2z of
rotation

coordinate along blade axis measured from lagging
hinge '

value of s for innermost blade section

kinetic energy of system

*time

vector of resultant inflow velocity
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resultant inflow velocity in plane of blade section

components of resultant inflow velocity in hovering
at any point of blade

gross welght of helicopter

induced downwash

1
forces aiong axes of rotor system- |X = f Py ds;
. 81
1 l .
Y= py ds; Z = r, ds
81 51

rotating right-handed Cartesisn coordinate system in
which 2z 1s axis of rotation end x coincides with
undeflected longitudinel blade axis (figs. 1 and 2)

magnitude of angular displa.cement about inclined
flapping hinge axis

component of By about a horizontal axis, (AR in fig. 1)
normal %o deflected blade axis (oc)

deviations of B end ¢ from steady-state position
steady-state values of B,.{, and 8, respectively

clrculation vector . '

inclination of lagging (vertical) hinge axis measured
from a line parallel to z-axis. (see fig. 2), positive
when positive lagging (i.e., retreating) produces a
decrease in blade angle-

inclinstion of flapping (horizontal) hinge axis measured
from a line parallel to y-axis (see fig. 1), positive
when positive flapping produces a decrease in blade
angle
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€0 = e/l

§5 magnitude of angular displacement about inclined
lagging hinge axis

¢ component of (g s&bout en axis (oD in fig. 2) parallel
to z-axis (see fig. 1)

2] total pitch, or blade, angle of blade section after
flapping and lagging deflections

6o ) design, or initial, blade angle -

(Ae)l change of pitch due to rotation gs -about lagging
hinge axis

(a8), change of pitch due to rotation Bs eabout flapping
hinge axis

tE =8/l

€L = 8/

o} density of alr

¢ ’ angle between x-axis and radius of a point on blade to
z-axis

Q angular velocity of rotor system

(ar)g,(ar)y components of linear rotational velocity of blade in
x- and y-directions, respectively

o natural frequency of oscillation of rotating blade

BASIC EQUATIONS

The basié equations of motion of a rotating helicopter blade in
flepping and lagging are derived here.

Coordinate system.- A right-handed Certesian coordinate system

(x,¥,2) in which the z-axis coincides with the axis of rotation of

the rotor system and the x-axis is in the direction of the undeflected
longitudinal blade exis is used. The x- and y-axes rotate with a blade
about the z-axis. The flapping hinge axis of a blade » which is assumed
to be in the plane of rotetion (x,y), is considered as offset by a
distance e, from the axis of rotation and inclined at an angle 63




NACA TN 2226 . T

to a line parallel to the y-axis (see fig. 1). The lagging hinge axis,
which is assumed to be in the vertical (x,z) plane, is considered to
be offset from the flapping hinge axis by a distance eo and inclined
at en angle 57 to a line parallel to the z-axis (see fig. 2).

Lagrange equations.- The Lagrange equations of motion can be
expressed in general as follows:

a or
o) "3 @)

where t is time, T is the kinetic energy of the system, q; 1is a
generalized coordinate, and Q4 is the corresponding generalized force.
The dot indicates differentiation with respect to time.

The kinetic energy of a moving blade is given by

¢

T =% a3+ + ) as (22)
81
where
. ¥ =%+ (ar)y
] (2p)
¥ =¥+ (ar)y

1 1is the length of the blade measured from the lagging hinge, s, is

the distance of the imnermost blade section from the lagging hinge, n
is the mass per unit length of a blade, ds is a blade-length element,
Q 1is the angular velocity of the rotor system, r is the distance of
any point of the blade from the axis of rotation, and (Qr), and (nr)y

denote components of the linear rotational velocity of a blade element
in the x- and y-directions, respectively.

The position of a blade after lagging and flapping can be determined
as follows:

First cons_:lder a rotation of magnitude CS gbout the lagging hinge'
axis. This produces a change of pitch (Ae):L of magnitude

(46) = =ty sin 5y . (3)
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Moreover, the component ¢ of rotation about an axis parallel to the
z-axis (OD in fig. 2) has the mamtude

= {5 cos & | (%)

Let the blade now rotate with an angular displacement of PBgy about
the inclined flapping axis. Then the additional pitch change (A6)p

due to this rotation is the component of rotation about the deflected
blade axis (OC in fig. 1). Thus

(29), = By sin(¢ - 83) ' (5)

Moreover, the component B of rotation of the blade sbout a horizontal
axis (AE in fig. 1) normal to the deflected blade axis (0C) after lagging
is given by

= B cos (83 - ¢) -~ (6)
The coordinates of a point P on the longitudinal axis of a blade at
a distance s (fig. 1) from the lagging hinge sxis can be expressed in
terms of the "flapping" and "lagging" displacemen‘t-components B and ¢
by the following expressions:

B cos B3 )
. x=e1+scosBcos§+e2cos———-
S cos(83-§)
Yy =-8cos 8 sin { } (7)
z=ssinﬁ+e2§inﬁ—m—-83—
. cos(d3 - t) J .

The velocity components at any point of a blade which are due %o
the rotation of the rotor system can be expressed as follows (see fig. 3):

(ar); = -0r sin § = -Qy

_ (8)
(Qr)y =Q0r cos § =

where x and y ere given by equations (7).
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By considering B and ¢ as the two generalized coordinates,
equations (2a), (2b), (7), and (8) may be substituted into equation (1)
to give the left side in terms of B, {, and time derivatives thereof.

Generalized forces.~ The generalized forces Qi here are due to
the merodynamic anf weight loads. The force @y (here Q and QB)
is defined by

Q§8§+QBSB=X8x+Y8y+ZSZ (9a)

1
X = Py ds
Bl .
1
f Py ds (9p)
81
z .
Z = f P, ds
Sl J

and Py py, and. p, are the aerodynamic plus weight loads per unit
blade length in the x-, y-, and z-directions, respectively.

where

o]
I

ng

From equation (9a) it follows that

ox oy dz |
%=X§E+YSE+Z'B_5'
> (10)
ox oy oz
U=XFrISEI

Th_e derivatives %%{, %, and so forth can be determined in terms of B

and ¢ by means of equations (7).

>

Lift loads.- The 1ift loads,. based on quasi-stationary flow, can
be found from the three-dimensional Kutta-Joukowski theorem:

I' =pV X T (12)

. — - emme e we e ———— —— —_— = - e T

PRSP S
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vhere p is the density of the fluid meddum, V is the vector of
the resultant inflow velocity, and I’ is the circulation vector. The
velocity components in hovering at any point of a blade can be expressed
as:
- L T
Vy=Qy - x

Vy=-0x-§ ¢ ‘ , (12)

e

vz=-wi.. ]

where w; 1is the induced downwash at the rotor, while x, y, and =z
can be put in terms of B and ¢ by means of equations (7). The
induced downwash is here assumed as constant throughout the rotor disk
in hovering. According to the simple momentum theory, it can be calcu-

lated from the expression:
Wi w
== \/———— ' (13)
a 21tR2pﬂ222

where W is the gross weight of the helicopter and R is the tip radius
of a blade. '

By considering the circulation vector .I' +to coincide with +the
deflected longitudinal blade axis and to have a magnitude determined by
the Kutta condition of finjite trailing-edge velocity in two-dimensional
flow, the 1ift loads can be derived in a manner similar to that given
in detail in reference 1. By assuming B, {, 6 (the blade angle),
and wi/Ql to be first order small, the following expressions for the
1lift load components per unit length of a blade can thus be derived to
second~order quentities: )

Lx' = p:rcn(e1+e2+ s)B[B(e2+ s) +wy - Q(el+ ep+ s)e]
Ly' = p:rc[B(e2+s)+wi] [ﬁ(e2+ s)+wi-9(e1+e2+s)9]

. ()
L;' = pnc {Ea(e2+s) +wi:”:§s- Q(ep+eo+ s)] - 2§Qs(e1+ ep+ 5)0 -

3

92(e1 +ep +5) [B§(e1+e2) -(ep+ten+ s)e]}

where c¢ 1is the chord length of a blade section.

>
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Drag loads.- The expressions for the 1lift load components include

the effect of induced drag, since they include the effect of downwash.
The profile-drag loads can be determined from the following expression
for the profile drag per unit length of a blade:

do = cdo -g- Vnsac (15)
where cg, 18 the profile-drag coefficient of. a blade section and Vs
is the resultant inflow velocity in the plane of the blaede section. By
considering cg, @as constant and the resultent drag force as acting
parallel to the resultant inflow velocity, the following expressions,
with cgo considered as first order small, are obtained for the drag
load components to second-order qua.ntitieé:

1
Aox =-3 gpccdonas(el + ep + 8)

doy = -;‘- pccgofi(ey + e + 8) [2&3 - ey +ep + s)] (16)

g

dog =-% pccgofi(el + ep + 8) [_Vi + é(ea + s)]

~

Welght loads.- The unit weight loads of a blade act In the
z-direction end mey be expressed in the form:

Dt = -Ig : (17)
where g 1is the acceleration due to gravity. )

Equations of motion.- The total pitch é.ngle of a blade section
efter deflecting is, according to relations (3) to (6), given by:

& =00 + B tan(f - 83) ~ ¢ tan B3 (18)

where 60 is the initial » or design, blade angle before flapping or -
lagging. This expression for 6 must be substituted in equa.tions (1%)
for the 1lift loads.

The equations of motion of a blade in flapping and lagging can now
be written explicitly in terms of B a.nd ¢ by substituting into
equetion (1). By putting

B = Bo + B(t)

€ = go +E(t)'-

— 3 e e — - —— - - —— e ———— =
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where B, and denote the values of B and ¢ in the stea
o o)

state, wvhile B(t) and {(t) denote small deviations from the steady
state, and observing that the steady-state values must alone satisfy
the equations of motion, the following nondimensional equations are
obtained for the values of B, and {, and for the vibrational

deviations PB(t) and &(t):

1 _ 1
aonf %(62+§)(el+62+§)d§+ME %(62+§)dg+
£, 1

1 .
f (€1 + €3 + E)(€p + E) [(Gl + €2)Bolo +
&, o

w C .
:n—i'- 1+ ﬁ) - (€1 + €0 + §)90]'d§ =0 (192)

1
clc 2 Wi Wi 2
]; Elia_go-(el+€2+§) +m(el+e2+§)6°_(§7 ]gag
o = = (19v)

1
H(eq + € B e gt .
(1 2)\];1%§

| %(Fl-HFg) +%F3 +§-§BFh+E(F5+F8tan81) + B(EF6 + F7) =0  (20a)

B(aFo + 11) + % 2+ f,_2 BL3 + B(ten 83 - Lo sec?s3)L) +
EE&L5 + (ta.n 81 - Po se'c263)1.).,_:| =0 (20v)
where a
-3 0 -3
=3 °e=F ¢ (21e)
= pﬂ]zl m= ‘_252_1
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L _ .
Fy = fgl -:—o(eg + 5)5[2((-:1 + €g + £)6p - IILZ' ag

)
no
!

1
_ 2B°f§ %g(ez +g) dat

!
w
!

Cdo
(1 +—--)J‘g a(ea + §)2(€1 + € + E) dt

= fgl ac(ce + B2 at

1
FS:BO-.[;]_ cid(el+€2+§)(€2+§) €1 + €p - (€1 + €0 + §) sec283:| ag

1
Fg = gl_(€2+§)("'1+‘52+§ -Mﬁo) dg

Fr = f;l 3;("'1 + e+ ) (2 +8)[(e1 + e0) bo+

(61 + 6p + ) (ta.n 83 - €o sec283)] dag
1

Fg = §1 cio(el + €5 + §)2(€2 + §) dg

1
w
fgl SCRDU LR EECETAN

[
=
]

1
Cdo
L2=—ﬂ—l];1co§2(l+ea+g) ag
e
Iy = —E< 4t
3 §1m°
1 .
wi
L],_ = g cog(Gl + €2 + g) d§
1
Iy = (1 + %) [, e

o p— e v ra—— e e —7 ———

13

et ———— At - - At = ———
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m, and c, refer to the mass and chord, respectively, of the innermost
blade section, and 6, is the steady-state value-of 6. The value
of 6, is given by: '

90=90+Bot311(§0'53);§otan51 (22)

In deriving equations (20a) and (20b) the vibrational deviations B
and ¢ (not B, and §o) have been assumed sufficiently small so that

only first powers of B and € may be retained.

The condition that the 1lift load support the gross weight of the
helicopter in hovering leads to the following expression for ‘0o:

W Wi
m+[nz(l+— +(1 + €2)Boto f —-(€1+‘='2+§):d§
eo = (23)

1
J; co(el + 6+ £)2 ae

where n is the number of blades in the rotor system.’

Steady-state values of B, {, and 6.- The steady-state equa-
tions (19a), (19b), and (23) can be solved for the velues of By, &o,
end 6, as follows. Equation (23) may be solved first for 6, with
the higher-order term (in Bogo) there neglec‘!:ed.. The value of §° can
‘then be obtained from equation (19b) and the value of Bo ‘can subse-
quently be determined from equation (19a). A second approximation for
the value of 6, can now be calculated by inserting the values of Bg
and £, thus o'btained into equation (23)." Second approximetions
for B, and {,, by using the new value of 6g, can then be determined
_ from equations (192) and (19b). It will usually be found that the

second approximations in this iterative procedure are sufficiently
accurate for practical purposes. The value of the design a.ngle 90 can

be found from the relation

90=90'Bot‘m(§o'53)+§ota¥151

- ——————m o — v, e = = e —————— - — - e —— e ———— =
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Tt may be noted here that the values of B, (o, and 6, are all

independent of the inclinations 87 and 53 of the hinge axes. However,
the appropriate value of the design blade angle .6y does depend on the

values of 5; &and B3.

Dynamic equations - physical significance.- Equations (20a) and
(20b) are the equations determining the characteristics of the small

vibrations of a helicopter blade sbout the state of static equilibrium
given, as explained above, by equations (19a) and (19b). The physical
significance of each of the terms in equations (20a) and (20b) is as
follows. The terms proportional to B and § represent the inertia .,
loads per unit of length acting on a blade. The term proportional to B
in equation (20a) represents primarily the aerodynamic damping load ..
caused by a'change of angle of attack induced by a vertical velocity B
of a blade element. The term -EHF6 in equation (20a) is due to the

" centrifugel loads, while the term PBF; -represents the 1ift load. The

term oF) in equation (20a) represents a 1ift load component (including

the effect of downwash) caused by a lagging velocity § » while the

term %EFQ represents a Coriolis load. The term proportional to §
in equation (20a) is a 1ift load.

In equation (20b), the term %LQ is proportional to the profile

drag of a blade section. The term EHI.5 in this equation represents
the centrifugal restoring force in lagging, while the term proportional
to {L) represents an induced drag, due to ‘the downwash wij. The

- N

-

term g-HFQ represents a Coriolis load while the term ng is an aero-

dynamic load. Finally, the term TB.LLL is an aerodynamic load due to
the downwash wi. .

Equation (20a) corresponds primasrily to the flapping oscillations,
while equation (20b) corresponds primarily to the lagging oscillations.
It will be observed, however, that these equations are coupled with each
other. It may be further noted that all of the coupling terms in legging

(proportional to B and B in equation (20b)) have magnitudes which
are at most first order small but that in flaspping there is a finite-
order coupling term proportional to tan d]. Consequently, inclination
of the vertical (lagging) hinge tends to produce considerable coupling
between flapping and lagging.

VO S U U Cem e s
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GENERAL SOLUTIONS FOR STABILITY AND VIBRATION CHARACTERISTICS

The general solution of the flapping and lagging equations and the
general implications of this solution are given here. In addition,
stability conditions are shown and discussed.

Basic solution.- Equations (20a) and (20b) are a system of linear,

homogeneous, differential equations with constant coefficients. The
solution of this system can be obtained by setting

B = APt
. (2k)
T = DeP

where A and D are real or complex constants (amplitudes) and p is
a real or complex constent ("frequency").

The following linear, simultaneous, elgebraic equations in A -

and D are obtained by substituting equations (24) into equations (20a)
and (20Db): .

A(q2HFh_ + qF3 + BF6 + F7) + D[q(Fl - B'_F‘a) + F5 + F8 tan 51] =0 (25a)
AE_;(HFQ + I'l) + ('ba.n 83 - &o sec263)I.)_,_] +

DEJ?BIB + glp + HLg + (ta.n 51 - Bo sec2_83)L1,_] =0 (25b)

where q =7p/0. )

For the existence of a nontrivial solution to the above equations ’
the determinant of_the coefficients of this system must venish. °
Expanding this determinant and setting it equel to zero leads to the
following quartic equation (to second powers of small-order quantities)
for the complex dimensionless frequency q:

all_qh + a.3q3 + a2q2 +a1q +a5=0 (26a)
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where

8y, = HF)Lg

a5 = E(Fylp + F3lg)
8y = HFL‘EES + (tem 8y - B, sec253)1q+:| + HLg(HFg + Fr) + Fgly +
HF, - Fp)(BF, + Ly ) ' \
( ° 1)( ® + l) . ' _ > (26b)
8 = F3E!I.5 + (tan 8; - B, sec283)Lh:l + Lp(WFg + Fr) +
(EF2 - Fa)Ly ten B3 - (P2 + Ip)(F5 + Fg ten 83)
.8y = (HF6 + F7)|:HL5 +(tan 51 - Bo secQGS)Lh] +

Ly|Fg ten Sl(go-secaé& - ten 83) - F5 tan 53]

Frequency end damping characteristics.- Equation (26s) determines

four values of q. If these values constitute two pairs of complex
conjugate roots, then they can be interpreted physically as follows.

If g=-Rtin, vhere R and o are real positive quantities,
then o is the natural frequency of osclllation, while 2% is the
logarithmic decrement, that is, the natural logerithm of the ratio of
amplitude of oscillation at any time to the amplitude one period or
cycle later. If R 1s negative, then the oscillations will increase
in amplitude with time and the motion will be unstable. A negative
real root for q indicates & nonoscillating subsident motion, which is
stable, while a positive real root, indicates .a nonoscillating motion of
steadily increasing amplitude, which is unstable.

Equation (26a) can be solved exactly for the values of g by -
means, for exemple, of Ferrari's method (reference 2, pp. 51 and 52).
"For purposes of a quicker, but approximate, calculation, the following
method may be used.

1

T T e e e e e e e e e e s v e v e cca—— -
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_ Let a first.approximation to & pair of roots of equation (26a) be
that which would be obtained in flapping if there is no coupling with
lagging. If one of these roots is denoted by gpp, then it follows from

equation (25a) with D = O <that:

2
o - F3 +\/ F3) _ HFg + Ty (21
fo = oHF) 2HF), HF),

A second approximation qﬂ to equation (26a), by using Newton's method

(reference 2, pp. 96-97) with qp, @8 first approximation whether it is
real or complex, will then be:

[qfo(rl m2)+r5] [qfo (o +17) +1y tan 53] +Fg tan al[qfo(nra +In) + (ten 83- £, sec253)I.],_]
(agoPHLs +agolo+ Hls+ L tan By )(20ecEFy+ F3 ) - Fa(EPo+ I1) ten 8y

91 =%t (28)

Similarly, a first approximation to the second pair of roots gq;,

of equation (26a), obtained by considering lagging without coupling to
flapping (equation (25b) with A = 0), may be assumed as

Lo + V(_I_.g_)z _Hs + (‘t_:a.n 81 - Bo sec283)L1,_ (29)
3

Q90 T~
lo " 2HLg 2HT, HL3
A second approximation, by Newton's method, will be

[q,o(rl - K¥p) + Fs] [0y (AFp +1) + Ly, tan 8] +Fg tem 8) [azo(EFp +1q) +{ten 85- ¢, secBs3)ry]
(2208 + q15F3+ BFg + Fr) (201003 + Ip) - Fo(HFo+ 11 ) tan 8y

(30)

Equations (27) and (29) may be interpreted physically as giving
the oscillation characteristics in flapping and lagging, respectively,
if there is no coupling between these motions. Equations (28) and (30)
give a first spproximation to the effect of the coupling on the damping
and frequency characteristics of the corresponding motions. 'If the
corrections indicated by equations (28) and (30) are found to be rela-
tively large, then it is suggested that the roots of equation (26a) be
calculated by Ferrari's method.

Corresponding to any root of equation (26a), equation (25a) or
equation (25b) determines the value of the ratio A/D, whose sbsolute
value gives the retio of the flapping amplitude to the lagging ampli-

tude. If there is no coupling, then |A| = ® for flapping, while
IAl 0 for legging. A complex value for A/D indicates a phase

.difference between the component flapping and lagging motions.
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From equations (27) and (28), it will be found that in ordinary
cases the angle of inclination &3 of the lagging hinge axis has rela-

tively 1little effect on the damping and frequency characteristics of the
motion of a blade corresponding primarily to flspping. The angle of
inclination &3 of the flapping hinge axis has, however, an important
effect on the frequency characteristics of the primarily flapping motion
of a blade. Increasing 83 negatively diminishes the natural frequency
in flapping, since the total effective restoring force (proportional

to B in equation (20a)) is diminished. It may be noted that a nega-
tive 53 indicates an inclination of the flapping hinge axis such that

a positive (upward) flapping motion produces an increase in the blade
engle 6 (cf. equation (5)). For sufficiently large negative values
of 83, in fact, the restoring force becomes negative and an unstable
motion results, evidenced by at least one positive real root for .
Physically, the reason for the decrease of restoring force in flapping
with increasing negative values of 83 is that a negative 53 tends

to produce an aerodynamic (1ift) load component opposing the centrifugal
restoring force.

From equations (29) and (30) it will be found that increasing the
angle 9q positivelyl increases the natural frequency of the motion
corresponding primarily to lagging but decreases the damping factor
(i.e., tends to make the real part of q positive). The natural fre-
quency of the primarily lagging motion is only slightly affected by the
angle 83. However, the damping factor in lagging is considerably
influenced by 83 (cf. numerical examples discussed in a following
section).

From equations (27) and (29), as well as equations (28) and (30),
it will be found that, in general, oscillating motions corresponding
to flapping will be much more heavily damped than those corresponding
to lagging, since the negative real parts of dp will be of higher order

of magnitude then those of qj.

The effect of offset, expressed quantitatively by the parameters €
and €p, 1s included in the general solutions given here. It will be
found from equation (29) 5 In fact, that the chief effect of small off-
sets is an increase in the uncoupled lagging frequency with increase in
the value of €3 + €p.

The coupling effects, as given approximately by equations (28)
and (30) , are much more important in the lagging motions (equation (30))

1a positive value of 531 means that the lagging hinge axis is
inclined such that a lagging (retreating) motion of the blade produces
a decrease in the blade angle 6 (cf. equation (3)).

mm e e, e e — e o
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than in the flapping motions (equation (28)). This is due to the fact
+that, although the corrections due to coupling in both of these equa-
tions are at most first order small, the magnitude of the uncoupled
lagging complex frequency %0 (especially its real part) is also small;

consequently, the correction in lagging is relatively impérta.nt. The
relstively important effect of coupling in lagging is also evidenced by

the relatively large value of l%l (order of magnitude of unity) corre-
sponding to q, when 8y 1is not zero. ‘

General stability criterions.- If one is interested only in the
stability of the motion of a helicopter blade, then it is not necessary
to determine the actual values of the four roots-of equation (26a).

The general condition that the motion be stable is that all of the
coefficients 'of equation (26a) have the same sign (viz, positive), while
also (reference 3)

aj (aga3 ~ &18)) - aoa.32 >0 ’ (31a)

Since a) and a3 are necessarily positive, it is necessary for sta-
bility that

8.2)07

al >0 L ' (31b)

ao>04

Conditions (31a) and (31b) together are necessary and sufficient for
stability. ' .

For purposes of a quick, but rough, calculation, the stability
criterions for the uncoupled flapping motions may be considered. From
expression (27) for dpgys this condition is found to be approximately:

XN
H : n;lo(e?."' g)(el+e2+§) ae
tan 83 > & sec283 - 11 " (32)

; gco-€2+ §)(€1+ €2+§)2 ag
a1
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In actual cases, this condition will usually be satisfied for &z > - 45°,
approximately. Condition (32) may be considered as an approximation even
with coupling taken into account, since, as noted above, the effect of
coupling is relatively small in flspping. It must be observed, however,
that inequality (32) 1s only a necessary but not a sufficient condition
for stebility of the entire motion Of a blade, since it does not include
the motions corresponding primarily to lagging.

NUMERTCAL EXAMPLE

A numerical example is given here to indicate the type of results
which may be obtained in practice and to illustrate the method outlined
in the previous section for finding the oscillation characteristics of
a rotor-blade system. The inclination of the lagging hinge axis 8;
will first be permitted to assume a range of velues, while the flepping
hinge axis will not be inclined; that is, &3 = 0°, Then the flapping
hinge axis will be inclined at various angles 53 while the lagging
hinge axis inclination &3 1s fixed at OY. Finally, the case of

inclining both hinge axes simultaneously will be considered.

The following data for-a typical helicopter are assumed;

Gross weight of helicopter, Wy pounds . . . . « ¢« ¢ ¢ « ¢ « » « » 3000
Number of rotor blades, D . ¢« o ¢ ¢ ¢ ¢ ¢ o o o o 6 ¢ o 6 o o ¢ s & 3
Angular speed of rotor system, Q, radians per second . . . . s . » . 25
Tip radius of e xotor, R, feet . . . . . & . ¢ & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « 21.5
Length of blade proper, 1, feet . . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o « « 20
Length of eccentricity, ej, feet . . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o 0o o .. 1
‘Length of eccentricity, ep, feet . . . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o 0.5
Chord width at root, c5, feet . . . . . ¢ ¢ 0 v 0o 0 0 0 0 0 0 0o o 1
Airfoil section . . o+ ¢ ¢ ¢ o ¢ o o ¢ ¢ ¢ o ¢ ¢« ¢ « ¢ » oo o Clark Y
Profile-drag coefficlent, cgo - o ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o s . o . 0,01

The structure of the blade consists of a tubular steel spar with plywood
ribs flanged on and plywood skin attached to them, The diameter of the
spar at the-root is 0.15 foot-and the wall thickness is 3/16 inch. The
effective area of the wood is assumed as four-tenths that of the steel,
and the density of steel is 15.12 slugs per cubic foot while the density
of wood is 1.5 slugs per cubic foot, It will be further assumed that
the blade has a constant cross section, Therefore,

2 -3
Co Mo
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It is ﬁecessa.ry to determine the values of H, M, and wifl first

in order to obtain the steady-state values of B, !, and 6. By substi-
tuting into equations (13) and (2la) one obtains

H = 0. 774014
M = 0.002576
Wi _
ar = 0.041665

The values of By, §o, and 6, can now be found by the iterative

procedure outlined in the section "Basic Equations." The following are
the values obtained by approximately solving (i.e., neglecting higher-
order terms in B, and {,) equations (23), (19b), and (19a),

respectively:

6, = 0.122583
£, = 0.051955
Bo = 00070968

A second approximation for 8y is now obtained by substituting the
gbove values of By and o into equation (23) and now retaining second-

order terms. By using this new value of 6o, second approximations
for {o and Bo are obtained from equations (19b) and (19a), respec-
" tively. The following are the values of the second approximations:

6o = o.122969'
o = 0.052162
s'o = 0.071369

It can be seen that the second spproximations here give sufficient
accuracy, since they differ little from the first approximations.
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It is now possible to calculate the parameters in terms of B3
given by equations (21b). Thus, it is found that

F] = 0.055504  F5 = 0.002062 - 0.022350 sec®s4
F, = 0.049364  Fg = 0.385102
F3 = 0.294369  Fq = 0.001507 + 0.313161 tan 83 - 0.016335 sec®y
F), = 0.358958  Fg = 0.313162
Ly = -0.006139 L3 = 0.333333
' Ly = 0.000875 Ly = 0.015451
Ls = 0.037500

The values of the uncoupled complex frequencies in flapping and
lagging (qfo and qiq, respectively) are first obtained by solving

equations (27) ahd (29), respectively. Then the first approximation to
the coupled frequencies (qfl and q;q, respectively) of the coupled-

oscillations is found from equations (28) and (30). In addition, the
quartic equation (26a) has been solved for q by Ferrari's (exact)
method to test the accuracy of Newton's method as it is applied here for
finding the approximate values of the coupled complex frequencies.
Finally, the ratio of the flapping amplitude to the lagging amplitude
A/D can be found from either equation (25a) or (25b). It should be
mentioned here thet the ratio A/D serves as a check, since & partic-
ular value of q should yield the same result from both equations (25a)
and (25b). It is sometimes necessary to adjust the root slightly in
order to satisfy both equations. A

Tebles I and IT contain the values of Qo , Qps 9 (exact),
and A/D, and 300 931> 92 (exact), and A/D, respectively, when 51
has a range of values and 83 = 0°. Tables III and IV contain the same
information for &1 = 0° and a range of values for 53. The results

given in tebles V and VI were obtained by inclining the lagging and
flapping hinge axes simultaneously.

The results of the numerical examples given in tebles I to VI
illustrate the general conclusions reached in the preceding section.
For example, the negative real parts of the flapping complex frequencies
are in all cases much greater than those of the lagging complex fre-
quencies, an indication of much greater damping of the flapping motions
than of the lagging motions. Table II illustrates how increasing ©;

i m e — —~ - [, —— = e e,
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.algebraically adversely affects the stability of the lagging motionms,
since the real part of gq; becomes less and less negative’ and- even

positive. Increasing 8; negatively, on the other hand, has a bene-

ficial effect on the damping of the lagging motions. From tables I
and II, in fact, it may be seen that the case 83 = O°, 81 = -450 is

quite satisfactory from a stability viewpoint, since the damping factor
for the lagging oscillations is over ten times as great as when & = o° »

while the flapping oscillations remain steble. The increase of the
* natural lagging frequency (imagina.ry part of. qz) with algebraically °

increasing 83 is also shown here. As evidenced by the values of A/D
in teble II, considerable flapping motions accompany the lagging motions,
unless &) % 0°. Table I indicates the rather small effect which an

inclination 8; of the lagging hinge axis has on the flapping ‘oscil-
lation characteristics. :

Table IIT illustrates the increase of flapping frequency with alge-
braic increase of the angle J3. It also shows the danger of insta-~
bility when &3 bhas an algebraically low value. Here, for 83 = -45° ’

the positive real root for gp indicates instability. Table IV shows
the relatively little influence of the inclination 83 of the flapping

hinge axis on the natural lagging fregquencies. It is interesting to note
here, however, that inclining the flapping hinge axis at an angle of
53 = 230° has a beneficial effect on the stability characteristics of

the lagging motion, since the real part of gq; then has a negative value

of at least three times that of gq; corresponding to the other values
of 83 considered here. However, it mey be observed from table ITI

that, in this case, the flapping frequency (imaginary part of qf) would
then become dangerously low.

Of the three cases considered in tsbles V and VI (81 # 0°, &3 4 0°),
the case 81 = —30°, 83 = 30° appears to be the most suitable from the
point of view of stebility characteristics. The case of 81 = 30°,

83 = -30° evidently leads to.instability, since the real part of q
is positive. Moreover, the case &3 = -3p° s 83 = -30° gives a slight
instability in flapping (qp has a smell positive real value).

A comperison in the tables between corresponding values
of gqpy+ with gp, and qj; with qj, shows that in most of the

numerical cases treated here, Newton's method (equations (28) and (30))
gives fairly good second? approximations for the complex roots of

2The first approximations, namely the uncoupled complex freqﬁencies 3
are given by equations (27) and (29).
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equation (26a). The only cases here in which this second approximation
geve unreliable results are: 81 = 0°, 83 = -U5° and &y = -30°,
83 = -300. The effect of coupling on the complex frequencies can be seen

from the tables by comparing gqp, with ey Or dQp, and qz, with d11
or dgz.

CONCLUSIONS

From an investigation to determine theoretically the characteristics
of the rigid-body oscillations in hovering of helicopter blades with
inclined and offset flapping and lagging hinge axes, the following con-
clusions are drawn: .

1. The frequency and damping characteristics of the (in general,’
coupled) flapping and lagging oscillations of a helicopter blade can be
calculated directly either by solving a quartic equation for the dimen-
sionless complex frequency or by using a second approximation for the
roots of this quartic. .

2. From the solutions it ias- found that the mein effect of inclining
negatively the flapping (horizontal) hinge exis is to diminish the natural
flapping frequency by diminishing the total restoring forces in flapping.

3. Inclination of the flapping hinge axis also has an important
effect on the damping characteristics of the lagging motion, as
evidenced by the numerical example treated here, which indicated an
inclination of -30° to be a desirable value from this viewpoint., This
value, however, gave a dangerously low natural flapping frequency.

4. The chief effect of inclining negatively the lagging (vertical)
hinge axis is to decrease the natural lagging frequency but to increase
the damping factor, -and therefore the stability, in lagging. Inclination
of the lagging hinge axis increases the coupling between lagging and

flapping and leads to large flapping motions accompenying the lagging
motions. .

5. The main effect of a slight offset of the hinge axes is an
increase in the natural lagging frequencies.

Polytechnic Institute of Brooklyn ,
Brooklyn, N. Y., October 24, 1949
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TABLE I.- VALUES OF qp,, Qg5 dp (EXACT), AND A/D

WHEN 8; HAS A RANGE OF VALUES AND &3 = 0°

(308)| (cxmmtits (21 | Ccommtith (28)) | (ommie A/D
45 |-0.5297 £ 0.85961|-0.6388 + 0.93231-0.5858 + 0.90381{5.181 ¥ 6.2k01
30 | -.5297 + 0.85961| -.56T7 + 0.88271| -.5630 * 0.88161|k.904 ¥ 6.18T1
0 | -.5297 * 0.85961| -.5338 + 0.84841| ~.5255 * 0.85151|4.470 F 6.1271
=30 | -.5297 % 0.85961| -.4878 + 0.82h91| ~-.4795 + 0.82411(3.888 F 6.2171
-45 | -.5297 + 0.85961| -.4999 + 0.83111| -.4392 + 0.80911|3.51k ¥ 6.1431
TABLE IT.~ VALUES OF q;,, 433, Q7 (EXACT), AND A/D .
WEER 8 HAS A RANGE OF VALUES AND &3 = 0°
()| (eaumtiog (29)) | (euaticn (300 (exart) A/
45 |-0.00169 *0.4100i[0.05672 +0.37531|0.05435 +0.38451{-0.9307 +0.42281
30 | -.00169 £0.3779i| .03117 +0.3638i] .03151L +0.36601| -.5346 =+o0.21%01 }
0| -.00169 *0.32901|-.005k91 *0.33181|-.005891 #0.33161 .06312 ¥ 0.04k7131
-30 | -.00169 +0.27141|-.04303 *0.25761|-.04303 %0.25761| .77 = 0.24251
=45 | -.00169 #0.21991|-.07733 +0.20521|-.07733 +0.20511i} 1.302 T 0.28961
TABLE ITT.- VALUES OF Qo , 45, 9, (EXACT), AND A/D
WHEN 8; HAS A RANGE OF VALUES AND &) = 0°
()| (camtis e1) | (oaumtimh () | (eniEi) 4/
45 [¢0.5297 # 1.3441 |-0.5271 & 1.3391 |-0.527L # 1.3391 {7.881 F 9.ok2t
30 | -.5297 + 1.1704 | -.5273 % 1.1654 | ~.52Th + 1.1651 |6.444 + 8.28T71
0| -.5297 +0.85961| -.5338 & 0.84841| -.5255 * 0.85151| 4.470 ¥ 6.1281
-30 | -.5297 + 0.2617Ti| -.4695 + 0.19T4i| -.5093 + 0.18091|3.478 ¥ 1.0331
.1389 .1817 1737 3.024
2 { -1.198 -1.222 -1.221 T.302
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TABIE IV.- VALUES OF G0 Q10 9 (EXACT), ARD A/D
WHEN 83 HAS A RANGE OF VALUES AND & = 0°
83 20 21 2
(aeg)| (equation (29)) | (equation (30)) (exact) A/D
15 |1-0.001696 + 0.32244|-0.00%4358 + 0.32991|-0.004360 * 0.32981]|0.07376 F 0.023361
30 | -.001696 + 0.32681] -.004068 + 0.33121] -.004165 + 0.33111) .05907 ¥ 0.026801
0| -.001696 £ 0.32901] -.005491 + 0.33181]. -.005891 * 0.33161i] .06312 ¥ 0.047131
-30 | -.001696 + 0.32681] -.02232 + 0.33451] -.02202 + 0.33701{ .088k1 ¥ 0.24081
-45 | -.001696 + 0.322hi| -.04357 + 0.32241| -.007629 + 0.359T7i| .2364 = o.218é1
TABIE V.- VALUES OF Qp, Qg5 Qe (EXACT), AND A/D
WHEN & 4 0°. AND B3 4 0°
B
3 Aro ar ap
(deg) | (deg) | (equation (27)) | (equation (28)) (exact) A/D
30 | .-30 |-0.5297 £ 0.26171}-0.5471 £ 0.55121 |-0.6048 + 0.40481]4.093 * 2.4631
-30 30 | -.5207 + 1.1701 | ~-.5073 + 1.14l4i -.5055 + 1.1491 |6.206 F 8.3721
' -.8179 1.997
-30 { -30 | -.5297 + 0.26171] ~.3374 % 0.012681
\ 01907 5.260
I v
TABLE VI.- VALUES OF g, Q375 9q; (EXACT), AND A/D
WEEN 8 £ 0° aND &3 4 0°
& 8 %0 Q1 LY
(2e8)|(ae) | (equation (29)) | (equation (30)) (exact) A/
30 | -30 |-0.001696 * 0.37601]0.07318 * 0.3%081|0.07341 % 0.35891|-0.6374 * 0.83611
-30 30 | -.001606 + 0.26871|-.02806 * 0.29891|-.02598 * 0.29951| .4698 =+ 0.1046i |
-30 | -30 | -.001696 & 0.2687i|-.2173 *0.1820i|-.1320 #* 0.45221| .04182 F 2.1061

~REA
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Figﬁre 2.- Blade configuration in vertical (x,z) plane.
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Figure 3.- Rotational velocity @r at a point of a blade (t.hree-
dimensional view).
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